Category: Iacdrive_blog

The effect of power failure on VFD

Q: I am planning to put some variable frequency drives on non-critical section of factory where there will be planned interruption of 30 seconds but 2 times a day.

A: Why are you going to use VFD, variable frequency drives are expensive. What is the application?
If the application require fix speed / rate Soft Start device is required.

However, if there might be frequent start stop (Power OFF/ON) AC Contractor Duty AC3 are recommended to be used to bypass the Soft Starter or Static device once the required motor speed is reached and then Start/stop have no impact on the installation.

The technique of using AC3 Contactors, is not applicable for VFD if the VFD is necessary for application. In this case the other advantage associated with VFD no longer will be valid (Protection, control and monitoring).

AC induction motor constant power

An AC induction motor is supposed to be a constant power motor, which implies it draws more current on low voltage. Consider a motor running a constant torque load at a particular speed. Suppose now the voltage is reduced, which should cause it to settle down at a lower speed supplying the same torque as per the new torque speed characteristic. If we consider the electrical side, higher slip will cause more current to be drawn that too at higher pf, which should maintain the power justifying the above theory. But on the mechanical side the new output power Torque x speed is supposed to be lesser now as speed is less now. Is it this contradiction?

The following guidelines prove there is no contradiction since your question about Motor under running condition:

1. Torque / Slip characteristic for Induction Motor has three Zones.
a)- Starting Torque @ S=1, selection of this torque depends on the application. The starting should be greater the system torque at time of starting.
b)- Unstable Zone during which acceleration and torque development took place. This zone up to the Max. Torque can be developed.
In this regard, it may be necessary to mention that the seventh harmonics to be considered otherwise crawling / clogging may occur.
c)- Normal Operating Zone. NOZ about which your query raised. NOZ ranged as ” 0 < S< 1″ ie up to the Max. Torque. It is worth mentioning that Max. torque always remain the same regardless to its location of occurrence.

2. The torque is directly proportional to rotor resistance “r2” & varies with slip “S”. hence increase of rotor resistance is the most practical method of changing the torque (ie wound rotor Slip ring Motors). Moreover, the Max torque achieved when rotor Resistance “r2” = The Stator impedance, At starting S=1.

3. Accordingly, the ration r2/x2 gives the location of the max. Torque w.r.t Slip (if the max. torque is required at starting (S=!) then r2/x2 should equal “1”.

4. load being constant. Mechanical output = Electrical input – losses.

5. Tmax Propotional to Sq(v). decrease of 50% of the supply voltage generate a reduction of 20% in the max. running Torque (zone c) , increase in slip and also Full load current and temperature raise increase while the full load speed decrease. the status of the above parameters will be opposite if the voltage increases by 10%.

Based on the above, in all cases since the Motor is running within the operating range will be no issue unless the supply voltage falls behind the above limits (-50%, +110%). Accordingly, variable frequency drives provided by under/Over voltage protection relay to avoid damage to insulation due to Heat/temperature rise that will be generated due to excessive current intend to composite load.

Parallel operation of autotransformers

Q:
We have 2 no 160MVA 220/132/11 kV transformers with short circuit impedance 46.06 ohm, and one 160MVA transformer, 220/132/11 kV with % impedance 15.02%. Can we parallel these three transformers?

A:
Indeed, the vector group is an important (mandatory) consideration when connecting transformers in parallel. And also important if a transformer is going to close a loop in either the HV or LV sides.

But it is perfectly OK to parallel transformers with different impedances. All it is going to happen is an uneven distribution of the power flow, among the parallel transformers. The unit with the lowest impedance would carry a larger share of the load.

Regarding “same ratio”: are you talking about the transformer ratio, such as 138/230 kV? Or are you talking about tap positions? Within certain constraints, it is possible to parallel transformers with different ratios (let’s think, for a second, of identical transformers at different tap positions). This is not recommended, though, because of reactive power circulation.

So, without disagreeing with the factors that you have listed, I would like to re-order, if you will, the conditions you have described:
1) Mandatory: making sure that the vector group and nominal voltages of transformers being considered for parallel operation are indeed adequate and compatible with the intended parallel operation
2) Desirable: ability to operate parallel transformers at the same tap positions or as close as possible, to minimize reactive current circulation
3) Almost indifferent: identical impedances on the parallel transformers simplify things a bit, but this is not a “show stopper” for parallel operation of these transformers. Actually, it is more realistic to expect some differences in impedances, even for otherwise “identical” transformers (same manufacturer, same nameplate ratings, etc.)

For the “Y-Y- Delta” transformers operated in parallel, there exist two kinds of the circulating currents between the tanks and between the banks of the delta side. As the circulating current between the tanks is 90 degree out of phase of the load current, it is estimated by decomposing the line current into the component 90 degree out of phase of the load current. The circulating current between the banks in the delta side is estimated from the delta winding current and the line currents.

The estimated circulating current depends on the power factor of the system even with the same tank currents. This characteristic is derived from the view point of the active and reactive power. Also, it needs the voltage as well as the tank and the load currents.

What happen if we put a magnet near digital energy meter?

In the “olden” days when there were only moving disk meters, I heard that people drilled small holes into the Bakelite cases and tried to get spiders to make a web inside the meter and slow the meter down. It probably wasn’t true, but there have always been people trying to get something for nothing.
I also heard that some people were using a welder and found that their moving disk meter went backwards, but it depended where they positioned the welder, and how strong the welding current was.

Back to electronic meters, if there are transformers inside the electronic meter, placement of a magnet as close to this transformer as possible could cause over fluxing every half a cycle, this could cause a diode like affect in the meter electronics, and if the electronics are designed to eliminate harmonics for calculating energy usage, then the magnet has let this person pay less for electricity, i.e. steal electricity.

Of course the meter may also have a detection circuit for high harmonics and send a message back to the utility to say the harmonic level is too high and a serviceman may then discover this magnet.
I do know that some electronic meter IC manufacturers have added a bump circuit into their ICs so I am sure they have thought about this sort of trickery too.

I like everyone paying full dollar for their electricity, otherwise most of us are carrying the small number of people doing these sorts of things.

“Meters should offer compliance to requirements of CBIP-304 and its amendments for tampering using external magnets. The meter should be immune to tamper using external magnets. The meters should be immune to 0.2T of A.C. magnetic fields and 0.5 T of D.C. magnetic fields, beyond which it should record as tamper if not immune.”
The above statement is a requirement during the manufacturing of digital energy meter. Hence we shall assume that digital meters are tamper proof using Magnets.

Reactive consumptions in AC power system

There are two types of reactive consumptions in AC power system, inductive and capacitive reactances. We can not call them losses. The loss of a transmission line is the active power consumed by the line resistance which is determined by the current on the line. Reactive power can adjust the power factor and control the apparent power, then the current and losses on the line.

The minus reactive power means capacitive load is higher than the inductive load, which happens when the transmission line has no load or with pure resistive load because the capacitive load along the TL dominates the reactive load. In this situation the voltage at the end of the line should be higher than the one at the beginning (you should get it when you get the negative reactive power).

When the load (80% of the industry load is inductive) increases, the reactive power will be positive as the inductive load will dominate the reactive power consumption, and then voltage will lower than that at the beginning. So the optimized choice for the reactive load is that in power plant generating less reactive power (reducing the losses on the line) and generating the compensating reactive power (negative reactive power) at consumer side by using capacitor banks or synchronizing motor, which can increase the power factor of the consumption and regulate the voltage (if the transformer has no taps), and then efficiency (save money) as well.

High AC current inductors

There are several issues at work here. For high AC current inductors, you want to have low core losses, low proximity loss in the windings, and low fringing effects.

At normal frequencies, ferrites are by far the lowest core loss, much better than MPP and other so called “low-loss” materials. So you would like to use them from this aspect.

A toroid gives the greatest winding surface for the magnetic material, letting you use the least number of layers and hence minimizing proximity loss. The toroid also has the advantage of putting all the windings on the outside of the structure, facilitating cooling. This is very important.

However, you can’t easily gap a toroid of ferrite, it’s very expensive.

Some aerospace applications actually cut the ferrite toroid into segments and reassemble them with several gaps to solve the problem. The multiple gaps keep fringing effects low. It might be nice if you could buy a set of toroidal segments so you don’t have to do the cutting because that is a big part of the cost. I don’t know if that is a reasonable thing to do, maybe someone can comment.

Once you go to MPP, the core loss goes up, but the distributed gap minimizes the fringing losses.

The MPP lets you run somewhat higher on current before saturation, but if you have high ac you can’t take full advantage of that due to the core losses.

All these tradeoffs (and quite a few more not mentioned for brevity) are the reason that so many different solutions exist.

Avoid generator overload

Two buses of 11kv, 750MVA, 3000A each fed by a transformer of 40MVA and connected through a tie breaker, now connect a generator of 18MW,11kv, 0.8 PF. How to avoid overloading?

The generator is being used as a backup power source in case utility power is lost, based on such info presented, you are going to have a hard time getting this to work with only ONE 18MW gen. In order to connect the 18MW gen to both buses, the total demand should not be more than 80% of 18MW or 14.4MW at .8 power factor. For short run times (10 or 15 minutes), you can load the gen up to 90% for continuous load, but for long run times, you need to keep it at 80%.

Demand is the diversified connected load. Not all 54.22MVA of connected load will be on at the same time, so this is why you “diversify” the load to get your actual demand load. You can look at your power bill or call your utility to find out your total demand. Or you can install a power quality monitor for a couple of weeks to get it.

A general rule of thumb is to assume that 67% of the connected load will be your demand load. But this depends on your operation. Based on this, one generator will not be sufficient for BOTH buses. However, if you are supplying each bus with its own generator, you may be ok.

Another issue is motor starting flicker. Make sure your generator can start your largest motor and that your disconnect breaker or fuses can handle the inrush. I have seen this as an issue, especially when soft starters are used. Soft starters lower the inrush by exploiting the time characteristic. If the soft starter settings do not bring the motor up to speed quickly enough, the overload trip setting on your generator may trip.

The bottom line is, you are going to have to look at this installation much closer in order to make this work with one 18MW gen. You may even have to disconnect some load when you are running on generator.

Creepage in thermal substations

The term creepage distance is specifically associated with porcelain insulators used in the Air Insulated substations. Insulator surface attracts dust, pollution (in industrial areas) and salt (along the sea coast) and these form a conducting layer on the surface of the insulator body when the surface is wet. As long as this surface is dry, there is not much problem. But when it becomes wet during early morning or during winter season the outer surface forms a conducting path along the surface from high voltage terminal to earthed metal fitting at the end of metallic structure and may lead to surface conduction and finally external flash-over. The insulators are provided with Sheds to limit the direct exposer to mist or dew. The protected area of the sheds will not allow formation of continuous conducting layer along the surface of insulator as the part of surface which is under the sheds may not become wet due to mist or dew and this part (length along the bottom surface) of the insulator surface is called protected creepage.

Measurement of corona inception and extinction voltages give a fair idea about the possible flashover even with protected creepage. But these will change under different levels of pollution.
This problem is not present with Composite insulators as the Silicone rubber sheds surface does not allow formation of continuous wet conducting layer as the surface of these insulators is Hydrophobic. Hence higher creepage is not considered for composite insulators.

However air density is also a limiting factor for deciding the creepage of insulators, necessitating higher creepage in case of higher altitudes.
You may have to assess the level of pollution and altitude of substation and select the creepage accordingly.
Medium pollution levels may be 25mm/kV
Very high pollution areas like on the sea coast and chemical and pharmaceutical industrial areas 31mm/kV where the insulators may become expensive alternatively periodic hot line washing is also another solution for cleaning of pollution on insulators.
In case of very high pollution levels GIS may be safe solution (if cost is not an issue)

Thermal substations where there are no electrostatic precipitators may also experience equipment failures due to pollution. Pressurized equipments like SF6 gas circuit breaker experienced external flash-overs during winter months in Northern India The utility was not accepting the theory of insulation failure due to pollution initially but they had to accept the cause of failure as pollution when they had similar failure in the consecutive year during the same winter months and they have resorted to hot line washing since then and there are no more such failures. Sometimes these deposits may not be seen glaringly but failure may happen.

High current intensity harmonics [%THD (A)] in several motors?

Most electric motors that suffer variations in Load already have variable frequency drives, we have capacitors installed in general switchboard to correct the reactive energy and so on. I did a discretization of the electrical consumption by product type, during this energy survey I noticed that in most motors Amperage THD was high, above 40%. I would like to know what effect does it have on efficiency and possible causes and solutions.

One more thing, when is it profitable to substitute motors by high efficiency motors? Because in the transport system I have about 60 electric motors below 10HP with a power factor of 0,6 , I was thinking in installing a capacitor in the switchboard of the transport system.

Variable frequency drives and other power electronic loads will draw harmonic currents from the power source. More VFDs, UPSs, rectifiers, etc means more harmonic current. When harmonic current flows through system impedance, it causes harmonic voltage to be present on the power system. That means there are essentially harmonic voltage sources at each harmonic frequency and therefore loads will draw current (harmonics) at each one of those frequencies. PF Capacitors offer a low impedance path to harmonics (attracting them) and may be damaged when connected to a system with harmonic producing loads. It is also possible for capacitors to cause a resonance condition whereby the harmonics can be amplified. Consider detuned capacitors (with harmonic blocking reactors) or addition of harmonic filters. There are several alternative methods of filtering the harmonics.

Automation solution

Automation is a solution:
1. To reduce the manpower & the CTC due to them.

2. Few skilled technicians can run the automated machines smoothly, with much lesser number of errors & faults (as human is not directly controlling every thing & is not burdened with multitasking challenge for extended duration which causes fatigue and hence errors/faults)

3. The power consumption & time to market can be estimated & reduced as machines will be operated on time & can work for longer durations than human beings & they don’t ask for tea/coffee/lunch breaks nor they ask for incentives. (Care for peoples who are maintaining them as well as care for machines which are earning profits for you, by regular maintenance & regular proper inspection of their conditions). Now days very good automatic power mgmt processors/controllers are available which can maintain the power as per the defined conditions as per the load & real time necessity.

4. Train the operators / technicians regularly to keep them up to date with tricks / methods / operations / principals to handle most situations by their own (will reduce the cost of a nonsense manager who is kept to yell, threat & discriminate subordinates and know only one slogan: “do it properly, otherwise, i will ….”). A training department which actually hold the capability to technically train employees from labor to talented engineers is a necessity of this age, as things are not remains just a lifting boulder & digging holes. We are living in an advance age in which we are having many expectations, competition & external pressures.

5. Finance bugs cries for expenses on NRE costs, salaries & treats this investments like invested in a share/equity/debt fund, but, earning from a business & financial mgmt capability must be inline with level & operations performed by the company. Instead of keeping low minds in tech industries, hire the engineers who has reached to an expertise level in automation industry & know the in depth issues occurring in between & underneath to estimate & expect correct values & timelines. Qualified project managers are much more realistic in their approaches, thoughts, assumptions & mentality.