Category: Iacdrive_blog

Caution is the key to success in power converters

I work across the scale of power electronics in voltages and currents. From switchers of 1W for powering ICs to 3kW telco power supplies up to multi-megawatt power converters for reactive power control in AC transmission networks and into power converters for high voltage transmission.

There is a difference in how you can work on these different scale converters. This difference is down to how much the prototype you are destroying costs, how long it takes to rebuild it and how easily it will kill you. When you spend more than 2 million on the prototype parts then you do not ever blow it up. If the high voltage on your converter is 15kV or more then there is no way to probe it with an oscilloscope directly and no possibility to be anywhere near that voltage without being hurt. So the level of care at these bigger power levels is higher and the consequence of a mistake is so high that the process needs to be much more detailed and controlled mostly for safety’s sake. We find that our big power converter processes really help when working on smaller converters. The processes include sign offs for safety, designed and prescribed safety and earthing systems for each converter, no scope probes put on and off live parts and working in pairs at all times with agreed planned actions. Pair working is one thing that may save you in the event of an electric shock. These processes seem very slow and cumbersome to engineers who work on low voltage (<1000V) but they are very useful even at low voltage.

Having said all that, experienced cautious engineers prevent converter blow ups. Add just a little bit of process and success can go up significantly. I think that an analysis of Dr Ridley’s failure list will point to actions that will improve success.

As my boss at one of those really large converter companies used to say “Stamp out converter fires”.

How to design an Panel required for PLC / MCC / Drive

1. The regular industrial standard size panel available with most of the panel fabricator’s.
2. Type of protection (used to say as IP).
3. Spacing depends upon the Power handled by the conductors inside Panel and the ventilation system.
4. Cable Entry / Bus bar entry may depend on the application and site condition. it may be at rear/bottom or at the top.
5. When comes to Drive, if the site condition is too hot then an industrial ac is required usually attached at the side of the panel.
6. Drive to drive required spacing (Check the manual of the drive}, since the power switching activity take place inside the drive.
7. Provide required space for the transformers and AC-choke since they create magnetic flux in ac circuits.
8. Don’t mix the Control cable, Power cable, Signal cable and Communication cable together in the cable tray… Otherwise you will be wired…
9. Keep the control on mcb/mccb/mpcb in handy location. So that its easier for operator to control it frequently and not disturbing other circuits..
10. Plc will be acquiring the top position in the panel since there is nothing to do with it once installed. Just we will be monitoring the status.
11. Don’t place the Plc nearby to the incoming or outgoing heavy power terminals..
12. Mcc panel are easy thing to do, but do the exact calculation for the ACB selection in the incomer side. Since each feeder will be designed with tolerance level.

There being a lot more than 12 guidelines to follow. What
about back-up power for the PLC? What about internal heat flow considerations
(not just does it need an AC or not)? How much space between terminal blocks
and wireway? What about separate AC and instrument grounds? What about wireway
fill? What about wire labels? What about TSP shields? What about surge
protection? In my experience, there are plenty of people that can design a
panel but if they haven’t gone to the field with it then they haven’t been able
to learn from their design mistakes.

The best thing you can do is start your design but you
really need to be guided by an experienced designer.

How to get confidence while powering ON an SMPS prototype?

I never just put power to a first prototype and see what happens. Smoke and loud sounds are the most likely result and then you just know that something was not perfect. So how would you test the next prototype sample?

A good idea is to put supply voltage to your control circuit from an external supply first – often something like 12V. Check oscillator waveform, frequency, gate pulses etc. If possible, use another external power supply to put a voltage to your output. Increasing this voltage slowly, you should see the gate pulses go from max. to min. duty cycle when passing the desired output voltage. If this does not happen, check your feedback path, still without turning main power on.

If everything looks as expected, remove the external supply from the output but keep the control circuit powered from an external source. Then SLOWLY turn up the main input voltage while using your oscilloscope to monitor the voltage waveforms in the power circuit and a DC voltmeter to monitor output voltage etc. Keep an eye on the ampere-meter on the main power source. If something suspicious occurs, stop increasing input further and investigate what’s happening while the circuit is still alive.

With a low load you should normally expect the output voltage to hit the desired value soon, at least in a flyback converter. Check that this happens. Then check what happens with a variable load – preferably electronic.

If you did not calculate your feedback loop, very likely you will see self oscillation (normally not destructive). If you don’t, use the step load function in your electronic load to check stability. If you see a clear ringing after a load step, you still have some work to do in your loop. But feedback and stability is another huge area which Mr. Ridley has taught us a lot about.

And yes – the world needs powerful POWER ENGINEERS desperately!

Avoid voltage drop influence

My cable size and transformer size should give me maximum 3% on the worst 6% to 10%. If it is the single only equipment on the system then maybe you can tolerate 15%. If not, dip factor may affect sensitive equipment and lighting.

This is very annoying for office staff each time a machine starts lights are dimming. It does not matter what standard you quote I cannot accept 10%- 15% make precise calculation and add a 10% tolerance to avoid.

In most cases, this problem comes from cable under sizing so we have to settle with a Standard giving 15% Max.

Just recently I had to order a transformer and cable change for a project which was grossly undersized.
I have had to redesign the electrical portion of a conveyor and crushing system to bring the system design into compliance with applicable safety codes. The site was outdoor at a mine in Arizona where ambient temperatures reach 120F. The electrical calculation and design software did not include any derating of conductor sizes for cable spacing and density within cable trays, number of conductors per raceway, ambient temperature versus cable temperature rating, etc. Few of the cables had been increased in size to compensate for voltage drop between the power source and the respective motor or transformer loads.

Feeder cables to remote power distribution centers were too small, as voltage drop had not been incorporated in the initial design. The voltage drop should not be greater than 3%, as there will be other factors of alternating loads, system voltage, etc. that may result in an overall drop of 5%.

The electrical system had to be re-designed with larger cables, transformer, MCCS, etc, as none of the design software factors in the required deratings specified in the National Electric Code NFPA70 nor the Canadian Electric Code, which references the NEC.

Experience: Power Supply

My first big one: I had just joined a large corporation’s central R and D in Mumbai (my first job) and I was dying to prove to them that they were really very wise (for hiring me). I set up my first AC-DC power supply for the first few weeks. Then one afternoon I powered it up. After a few minutes as I stared intently at it, there was a thunderous explosion…I was almost knocked over backwards in my chair. When I came to my senses I discovered that the can of the large high-voltage bulk cap had just exploded (those days 1000uF/400V caps were real big)…the bare metal can had taken off like a projectile and hit me thump on the chest through my shirt (yet it was very red at that spot even till hours later). A shower of cellulose and some drippy stuff was all over my hair and face. Plus a small crowd of gawking engineers when I came to. Plus a terribly bruised ego in case you didn’t notice. Now this is not just a picturesque story. There is a reason why they now have safety vents in Aluminum Caps (on the underside too), and why they ask you never never to even accidentally apply reverse polarity, especially to a high-voltage Al cap. Keep in mind that an Al Elko is certainly damaged by reverse voltage or overvoltage, but the failure mechanism is simply excessive heat generation in both cases. Philips components, in older datasheets, used to actually specify that their Al Elkos could tolerate an overvoltage of 40% for maybe a second I think, with no long-term damage. And people often wonder why I only use 63V Al Elkos as the bulk cap in PoE applications (for the PD). They suggest 100V, and warn me about surges and so on. But I still think 63V is OK here, besides being cheap, and I tend to shun overdesign. In fact I think even ceramic caps can typically handle at least 40% overvoltage by design and test — and almost forever with no long term effects. Maybe wrong here though. Double check that please.

Another historic explosion I heard about after I had left an old power supply company. I deny any credit for this though. My old tech, I heard, in my absence, was trying to document the stresses in the 800W power supply which I had built and left behind. The front-end was a PFC with four or five paralleled PFC FETs. I had carefully put in ballasting resistors in the source and gates of each Fet separately, also diligently symmetrical PCB traces from lower node of each sense resistor to ground (two sided PCB, no ground plane). This was done to ensure no parasitic resonances and good dynamic current sharing too. There was a method to my madness it turns out. All that the tech did was, when asked to document the current in the PFC Fets, placed a small loop of wire in series with the source of one of these paralleled Fets. That started a spectacular fireworks display which I heard lasted over 30 seconds (what no fuse???), with each part of the power supply going up in flames almost sequentially in domino effect, with a small crowd staring in silence along with the completely startled but unscathed tech (lucky guy). After that he certainly never forgot this key lesson: never attempt to measure FET current by putting a current probe in its source— put it on the drain side. It was that simple. The same unit never exploded after that, just to complete the story.

Induction machines testing

Case: We got by testing 3 different machines under no-load condition.
The 50 HP and 3 HP are the ones which behave abnormally when we apply 10% overvoltage. The third machine (7.5 HP) is a machine that reacts normally under the same condition.
What we mean by abnormal behavior is the input power of the machine that will increase dramatically under only 10% overvoltage which is not the case with most of the induction machines. This can be seen by the numbers given below.

50 HP, 575V
Under 10% overvoltage:
Friction & Windage Losses increase 0.2%
Core loss increases 102%
Stator Copper Loss increases 107%

3 HP, 208V
Under 10% overvoltage:
Friction & Windage Losses increase 8%
Core loss increases 34%
Stator Copper Loss increases 63%

7.5 HP, 460V
Under 10% overvoltage:
Friction & Windage Losses decrease 1%
Core loss increases 22%
Stator Copper Loss increases 31%

Till now, we couldn’t diagnose the exact reason that pushes those two machines to behave in such way.
Answer: A few other things I have not seen (yet) include the following:
1) Are the measurements of voltage and current being made by “true RMS” devices or not?
2) Actual measurements for both current and voltage should be taken simultaneously (with a “true RMS” device) for all phases.
3) Measurements of voltage and current should be taken at the motor terminals, not at the drive output.
4) Measurement of output waveform frequency (for each phase), and actual rotational speed of the motor shaft.

These should all be done at each point on the curve.

The reason for looking at the phase relationships of voltage and current is to ensure the incoming power is balanced. Even a small voltage imbalance (say, 3 percent) may result in a significant current imbalance (often 10 percent or more). This unbalanced supply will lead to increased (or at least unexpected) losses, even at relatively light loads. Also – the unbalance is more obvious at lightly loaded conditions.

As noted above, friction and windage losses are speed dependent: the “approximate” relationship is against square of speed.

Things to note about how the machine should perform under normal circumstances:
1. The flux densities in the magnetic circuit are going to increase proportionally with the voltage. This means +10% volts means +10% flux. However, the magnetizing current requirement varies more like the square of the voltage (+10% volt >> +18-20% mag amps).
2. Stator core loss is proportional to the square of the voltage (+10% V >> +20-25% kW).
3. Stator copper loss is proportional to the square of the current (+10% V >> +40-50% kW).
4. Rotor copper loss is independent of voltage change (+10% V >> +0 kW).
5. Assuming speed remains constant, friction and windage are unaffected (+10% V >> +0 kW). Note that with a change of 10% volts, it is highly likely that the speed WILL actually change!
6. Stator eddy loss is proportional to square of voltage (+10% V >> +20-25% kW). Note that stator eddy loss is often included as part of the “stray” calculation under IEEE 112. The other portions of the “stray” value are relatively independent of voltage.

Looking at your test results it would appear that the 50 HP machine is:
a) very highly saturated
b) has damaged/shorted laminations
c) has a different grade of electrical steel (compared to the other ratings)
d) has damaged stator windings (possibly from operation on the drive, particularly if it has a very high dv/dt and/or high common-mode voltage characteristic)
e) a combination of any/all of the above.

One last question – are all the machines rated for the same operating speed (measured in RPM

Active power losses in electrical motor

Equivalent active power losses during electrical motor’s testing in no-load conditions contain next losses:
1. active power losses in the copper of stator’s winding which are in direct relation with square of no-load current value: Pcus=3*Rs*I0s*I0s,

2. active power losses in ferromagnetic core which are in direct relation with frequency and degree of magnetic induction (which depends of voltage):
a) active power losses caused by eddy currents: Pec=kec*f*(B)x
b) active power losses caused by hysteresis: Ph=(kh*d*d*f*f*B*B)/ρ

3. mechanical power losses which are in direct relation with square of angular speed value: Pmech=Kmech*ωmech*ωmech,

Comment:
First, as you can see, active power losses in ferromagnetic core of electrical motor depend of voltage value and frequency, so by increasing voltage value you will get higher active power losses in ferromagnetic core of electrical motor.

Second, you can’t compare two electrical motors with different rated voltage and different rated power because active power losses in the ferromagnetic core, as I have already said above, depend of voltage value and frequency while active power losses in the copper of stator’s windings depend of square of no-load current value which is different for electrical motors with different rated power.

Third, when you want to compare active power losses in no-load conditions of two electrical motors with same rated voltage and rated power, you need to check design of both electrical motors because it is possible that one of them has different kind of winding, because, maybe in the past, one of them was damaged, so its windings had to be changed, what could be the reason for different electrical design and that has a consequence different no-load current value.

Friendly system without technicians diagnose

How to make our systems so friendly that they do not need technicians to help diagnose problems? Most of the more obvious answers have been well documented here but to emphasize these points it is normally the case that diagnostics and alarms can dominate the amount of code constructed for an application. That is the amount of code required to fully diagnose an application may be as much if not more than the code required to make the application work in the first place!

I have seen HMIs with diagnostic screens showing an animated version of the Cause & Effects code that allows users to see where the trip condition is. I have also seen screens depicting prestart checks, Operator guides, etc all animated to help the user. Allen-Bradley even have a program viewer that can be embedded on an HMI screen but you would probably need a technician to understand the code.

From a control system problem perspective it is inevitable that you would need to use the vendor based diagnostics to troubleshoot your system. Alarms may indicate that there is a system related problem but it is unlikely that you could build a true diagnostics application in your code to indicate the full spectrum of problems you may encounter. For example if the CPU dies or the memory fails there is nothing left to tell you what the problem is 🙂

From an application/process problem perspective if you have to resort to a technician to go into the code to determine your problem then your alarm and diagnostics code is not comprehensive enough! Remember your alarming guidelines an Operator must be able to deal with an abnormal situation within a given time frame, if the Operator has to rely on a Technician to wade through code then you really do need to perform an alarm review and build a better diagnostics system.

Motor design

When I was doing my PhD in motor design of reluctance machines with flux assistance (switched reluctance machines and flux switching machines with magnets and/or permanently energised coils) my supervisor was doing research on the field of sensorless control (it wasn’t the area of my research but it got me thinking about it all). At the time I had thought (only in my head as a PhD student daydream) that I would have to initially force a phase (or phases) to deliberately set the rotor into a known position due to the phase firing then start a normal phase firing sequences to start and operate the motor for a normal load without the need for any form position detection (all this was assuming I had the motor running from stationary to full speed at normal expected load with use of a position sensor to start with so I could link phase firing, rotor position and timings all together to create a “map” which I could then try to use to re-program a firing sequence with no position detection at all but only if I could force the rotor to “park” itself in the same position every time before starting the machine properly – the “map” having the information to assume that the motor changes speed correctly as it changes the firing sequences as it accelerates to full speed). But any problem such as unusual load condition or fault condition (e.g. short circuit or open circuit in a phase winding) would render useless such an attempt at control with no form of position detection at all. The induction machine being sensorless and on the grid being measured.

How/where do we as engineers need to change?

System Design – A well designed system should provide clear and concise system status indications. Back in the 70’s (yes, I am that old), Alarm and indicator panels provided this information in the control room. Device level indicators further guided the technician to solving the problem. Today, these functions are implemented in a control room and machine HMI interface. Through the use of input sensor and output actuator feedback, correct system operation can be verified on every scan.

Program (software) Design – It has been estimated that a well written program is 40% algorithm and 60% error checking and parameter verification. “Ladder” in not an issue. Process and machine control systems today are programmed in ladder, structured text, function block, etc. The control program is typically considered intellectual property (IP) and in many cases “hidden” from view. This makes digging through the code impractical.

How/where do we as engineers need to change? – The industry as a whole needs to enforce better system design and performance. This initiative will come from the clients, and implemented by the developers. The cost/benefit trade-off will always be present. Developers trying to improve their margins (reduce cost – raise price) and customers raising functionality and willing to pay less. “We as engineers” are caught in the middle, trying to find better ways to achieve the seemingly impossible.