Category: Iacdrive_blog

FETs in ZVS bridge

Had run into a very serious field failure issue a decade ago due to IXYS FETs used in a phase-shifted ZVS bridge topology. Eventually, the problem was tracked to failure of the FETs’ body diode when the unit operated at higher ambient temperature.

When FETs were first introduced for use in hard switching applications, it was quickly discovered that under high di/dt commutating conditions, the parasitic bipolar transistor that forms the body diode can turn on resulting in catastrophic failure (shorting) of the FET. I had run into this issue in the mid ’80s and if memory serves me correctly, IR was a leader in making their FET body diodes much more robust and capable of hard commutation. Having had this experience with FET commutation failures and after exhausting other lines of investigation which showed no problem with the operation of the ZVS bridge, I built a tester which could establish an adjustable current through the body diode of the FET under test followed by hard commutation of the body diode.

Room temperature testing of the suspect FET showed the body diode recovery characteristic similar to that of what turned out to be a more robust IR FET. Some difference was seen in the diode recovery as the IXYS FET was a bit slower and did show higher recovered charge. However, was unable to induce a failure in either the IXYS or IR FET even when commutating high values of forward diode current up to 20A when testing at room temperature.

The testing was then repeated in a heated condition. This proved to be very informative. The IXYS FETs were found to fail repeatedly with a case temperature around 80C and forward diode current prior to commutation as low as 5A. In contrast, the IR devices were operated to 125C case temp with forward diode currents of 10A without failure.

This confirmed a high temperature operating problem of the IXYS FETs associated with the body diode. Changing to the more robust IR devices solved the field failure issue.
Beware when a FET datasheet does not provide body diode di/dt limits at elevated ambient.

A more complete explanation of the FET body diode failure mechanism in ZVS applications can be found in application note APT9804 published by Advanced Power Technology.

I believe FETs can be reliably used in ZVS applications if the devices are carefully selected and shown to have robust body diode commutation characteristics.

Paralleling IGBT modules

I’m not sure why the IGBTs would share the current since they’re paralleled, unless external circuitry (series inductance, resistance, gate resistors) forces them to do so?

I would be pretty leery of paralleling these modules. As far as the PN diodes go, reverse recovery currents in PN diodes (especially if they are hard switched to a reverse voltage) are usually not limited by their internal semiconductor operation until they reach “soft recovery” (the point where the reverse current decays). They are usually limited by external circuitry (resistance, inductance, IGBT gate resistance). A perfect example: the traditional diode reverse recovery measurement test externally limits the reversing current to a linear falling ramp by using a series inductance. If you could reverse the voltage across the diode in a nanosecond, you would see an enormous reverse current spike.

Even though diode dopings are pretty well controlled these days, carrier lifetimes are not necessarily. Since one diode might “turn off” (go into a soft reverse current decreasing ramp, where the diode actually DOES limit its own current) before the other, you may end up with all the current going through one diode for a least a little while (the motor will look like an inductor, for all intents and purposes, during the diode turn-off). Probably better to control the max diode current externally for each driver.

Paralleling IGBT modules where the IGBT but not the diode has a PTC is commonly done at higher powers. I personally have never done more than 3 x 600A modules in parallel but if you look at things like high power wind then things get very “interesting”. It is all a matter of analysis, good thermal coupling, symmetrical layout and current de-rating. Once you get too many modules in parallel then the de-rating gets out of hand without some kind of passive or active element to ensure current sharing. Then you know it is time to switch to a higher current module or a higher voltage lower current for the same power. The relative proportion of switching losses vs conduction losses also has a big part to play.

Power converter trend

The trend toward lower losses in power converters is not apparent in all of the applications of power converters. It is also not apparent that the power converter solution and its losses for a given market will be the same when it comes to losses. In terms of the market shift that you mention, Prof. the answer is probably that each market is becoming split into a lower efficiency and higher efficiency solution.

From my limited view the reason for this is the effort and time required to do the low loss development. The early developers of low loss converters are now ahead and those that were slower may never catch them. This gap is in a number of converter markets widening, with both higher loss and lower loss offerings continuing to be used and sold. This split is not apparent with different levels of development or geographically.

Some markets already have very efficient solutions, other markets not so efficient and others had high power loss solutions. The customers accepted these solutions. The path to lower loss converters is for some markets not yet clear and in some markets the requirement may never actually become real.

It does seem that there is a real case to make for any power converter market splitting in two as the opportunities presented by lowering the power loss are taken.

All low loss converters present significant challenges and are all somewhat esoteric.

For me power supply EMI control consists of designing filtering for differential and common mode conducted emissions. The differential mode filtering attenuates the primary side differential lower frequency switching current fundamental & harmonic frequencies. The common mode filtering provides a low impedance return path for high frequency noise currents resulting from high dV/dt transitions during switching transitions present on the power semiconductors (switching mosfet drain, rectifier cathods). These noise currents ring at high frequencies as they oscillate in the uncontrolled parasitic inductance and capacitance associated with their return to source path. Shortening and damping this return path allows the high frequency noise currents to return locally instead of via the measurement copper bench and conducted emi current or voltage (LISN) probe as well as providing a more damped ringing frequency. Shorting this return path has the added benefit of decreasing radiated emissions. In addition proper layout of the power train so as to minimize the loop area associated with both the primary and secondary side switching currents minimizes the associated radiated emissions.

When I mentioned the criticism of resonant mode converter as related to the challenges of emi filitering I was referring to the additional differential mode filtering required. For example if you take a square wave primary side current waveform and analyze the differential frequency content the fundamental magnitude with be lower and there will be higher frequency components as compared to a purely resonant approach at the same power level. It is normally the lower frequency content that has to be filtered differentially.

Given these differences the additional emi filtering volume/cost of the resonant approach may pose a disadvantage.

Conditional stability

Conditional stability, I like to think about it this way:

The ultimate test of stability is knowing whether the poles of the closed loop system are in the LHP. If so, it is stable.

We get at the poles of the system by looking at the characteristic equation, 1+T(s). Unfortunately, we don’t have the math available (except in classroom exercises) we have an empirical system that may or may not be reduced to a mathematical model. For power supplies, even if they can be reduced to a model, it is approximate and just about always has significant deviations from the hardware. That is why measurements persist in this industry.

Nyquist came up with a criterion for making sure that the poles are in the LHP by drawing his diagram. When you plot the vector diagram of T(s) is must not encircle the -1 point.

Bode realized that the Nyquist diagram was not good for high gain since it plotted a linear scale of the magnitude, so he came up with his Bode plot which is what everyone uses. The Bode criteria only says that the phase must be above -180 degrees when it crosses over 0 dB. There is nothing that says it can’t do that before 0 dB.

If you draw the Nyquist diagram of a conditionally stable system, you’ll see it doesn’t surround the -1 point.

If you like, I can put some figures together. Or maybe a video would be a good topic.

All this is great of course, but it’s still puzzling to think of how a sine wave can chase itself around the loop, get amplified and inverted, phase shifted another 180 degrees, and not be unstable!

Having said all this about Nyquist, it is not something I plot in the lab. I just use it as an educational tool. In the lab, in courses, or consulting for clients, the Bode plot of gain and phase is what we use.

How to suppress chaotic operation in a DCM flyback at low load

I would like to share these tips with everybody.
A current mode controlled flyback converter always becomes unstable at low load due to the unavoidable leading edge current spike. It is not normally dangerous but as a design engineer I don’t like to look at it and listen to it.

Here are three useful and not patented tips.

First tip:
• Insert a low pass filter, say 1kohm + 100pF between current sense resistor and CS input in your control IC.
• Split the 1kohm in two resistors R1 to the fet and R2 to the control IC. R1 << R2.
• Insert 0,5 – 1pF between drain and the junction R1/R2. This can be made as a layer-to-layer capacitor in the PCB. It does not have to be a specific value.
• Adjust R1 until the spike in the junction in R1/R2 is cancelled.
You will see that the current spike is always proportional to the negative drain voltage step at turn-on. Once adjusted, the cancellation always follows the voltage step, and you some times achieve miracles with it. Cost = one resistor.

Second tip:
Having the low pass filter from first tip, add a small fraction of the gate driver output voltage to the current sense input, say 0,1V by inserting a large resistor from ‘Drive Out’ to ‘CS input’. The added low pass filtered step voltage will more or less conceal the current spike. You should reduce your current sense resistor accordingly. Cost = one resistor.

Third tip:
In a low power flyback, you some times just need an RC network or just an extra capacitor from drain to a DC point, either to reduce overshoot or to reduce noise. Connect the RC network or the capacitor to source, not to ground or Vcc. If you connect it to ground or Vcc, you will measure the added discharge current peak in the current sense resistor. Cost = nothing – just knowledge.

All tips can be used individually or combined => Less need for pre-load resistors on your output.

Differences of Grounding, Bonding and Ground Fault Protection?

Grounding (or Earthing) – intentionally connecting something to the ground. This is typically done to assist in dissipating static charge and lightning energy since the earth is a poor conductor of electricity unless you get a high voltage and high current.

Bonding is the intentional interconnection of conductive items in order to tie them to the same potential plane — and this is where folks get the confusion to grounding/earthing. The intent of the bonding is to ensure that if a power circuit faults to the enclosure or device, there will be a low-impedance path back to the source so that the upstream overcurrent device(s) will operate quickly and clear the fault before either a person is seriously injured/killed or a fire originates.

Ground Fault Protection is multi-purpose, and I will stay in the Low Voltage (<600 volts) arena. One version, that ends up being seen in most locations where there is low voltage (220 or 120 volts to ground) utilization, is a typically 5-7 mA device that’s looking to ensure that current flow out the hot line comes back on the neutral/grounded conductor; this is to again protect personnel from being electrocuted when in a compromised lower resistance condition. Another version is the Equipment Ground Fault Protection, and this is used for resistive heat tracing or items like irrigation equipment; the trip levels here are around 30 mA and are more for prevention of fires. The final version of Ground Fault Protection is on larger commercial/industrial power systems operating with over 150 volts to ground/neutral (so 380Y/220, 480Y/277 are a couple typical examples) and — at least in the US and Canada — where the incoming main circuit interrupting device is at least 1000 amps (though it’s not a bad idea at lower, it’s just not mandated); here it’s used to ensure that a downstream fault is cleared to avoid fire conditions or the event of ‘Burn Down’ since there’s sufficient residual voltage present that the arc can be kept going and does not just self-extinguish.

In the Medium and High Voltage areas, the Ground Fault Protection is really just protective relaying that’s monitoring the phase currents and operating for an imbalance over a certain level that’s normally up to the system designer to determine.

Hazardous area classification

Hazardous area classification has three basic components:
Class (1,2) : Type of combustible material (Gas or Dust)
Div (I, II) : Probability of combustible material being present
Gas Group (A,B,C,D): most combustible to least combustible (amount of energy required to ignite the gas)

Hazardous Area Protection Techniques: There are many, but most commonly used for Instrumentation are listed below:
1) Instrinsic Safety : Limits the amount of energy going to the field instrument (by use of Instrinsic Safety Barrier in the safe area). Live maintenance is possible. Limited for low energy instruments.
2) Explosion proof: Special enclosure of field instrument that contains the explosion (if it occurs). Used for relatively high energy instruments; Instrument should be powered off before opening the enclosure.
3) Pressurized or Purged: Isolates the instrument from combustible gas by pressurizing the enclosure with an inert gas.

Then there are encapsulation, increased safety, oil immersion, sand filling etc.

Weather protection: Every field instrument needs protection from dust and water.
IP-xy as per IEC 60529, where
x- protection against solids
y- protection against liquids
Usually IP-65 protection is specified for field instruments i onshore applications (which is equivalent of NEMA 4X); IP-66 for offshore application and IP-67 for submersible service.

SCADA & HMI

SCADA will have a set of KPI’s that are used by the PLCs/PACs/RTUs as standards to compare to the readings coming from the intelligent devices they are connected to such as flowmeters, sensors, pressure guages, etc.

HMI is a graphical representation of your process system that is provided both the KPI data and receives the readings from the various devices through the PLC/PAC/RTUs. For example you may be using a PLC that has 24 i/o blocks that are connected to various intelligent devices that covers part of your water treatment plant. The HMI software provides the operator with a graphical view of the treatment plant that you customize so that your virtual devices and actual devices are synchronized with the correct i/o blocks in your PLC. So, when an alarm is triggered, instead of the operator receiving a message that the 15th i/o block on PLC 7 failed, you could see that the pressure guage in a boiler reached maximum safety level, triggering a shutdown and awaiting operator approval for restart.

Here is some more info I got from my colleague who is the expert in the HMI market, this is a summary from the scope of his last market study which is about a year old.

HMI software’s complexity ranges from a simple PLC/PAC operating interface but as plant systems have evolved, HMI functionality and importance has as well. HMI is an integral component of a Collaborative Production Management (CPM) system; simply you can define that as the integration of Enterprise, Operations, and Automation software into a single system. Collaborative Production Systems (CPS) require a common HMI software solution that can visualize the data and information required at this converged point of operations and production management. HMI software is the bridge between your Automation Systems and Operations Management systems.

An HMI software package typically performs functions such as process visualization and animation, data acquisition and management, process monitoring and alarming, management reporting, and database serving to other enterprise applications. In many cases, HMI software package can also perform control functions such as basic regulatory control, batch control, supervisory control, and statistical process control.

“Ergonometrics,” where increased ergonomics help increase KPI and metric results, requires deploying the latest HMI software packages. These offer the best resolution to support 3D solutions and visualization based on technologies such as Microsoft Silverlight. Integrating real-time live video into HMI software tools provide another excellent opportunity to maximize operator effectiveness. Live video provides a “fourth dimension” for intelligent visualization and control solutions. Finally, the need for open and secure access to data across the entire enterprise drives the creation of a single environment where these applications can coexist and share information. This environment requires the latest HMI software capable of providing visualization and intelligence solutions for automation, energy management, and production management systems.

Automation engineering

Automation generally involves taking a manufacturing, processing, or mining process that was previously done with human labor and creating equipment/machinery that does it without human labor. Often, in automation, engineers will use a PLC or DCS with standard I/O, valves, VFDs, RTDs, etc to accomplish this task. Control engineering falls under the same umbrella in that you are automating a process such as controlling the focus on a camera or maintaining the speed of a car with a gas pedal, but often you are designing something like the autofocus on a camera or cruise control on an automobile and oftentimes have to design the controls using FPGA’s or circuits and components completely fabricated by the engineering team’s own design.

When I first started, I started in the DCS side. Many of the large continuous process industries only let chemical engineers like myself anywhere near the DCS. EE landed the instruments and were done. It was all about you had to be process engineer before your became a controls engineer. In the PLC world it was the opposite, the EE dominated. Now it doesn’t line up along such sharp lines anymore. But there are lots people doing control/automation work that are clueless when comes to understanding process. When this happens it is crucial they are given firm oversight by someone who does.

On operators, I always tell young budding engineers to learn to talk to operators with a little advice, do not discount their observations because their analysis as to the cause is unbelievable, their observations are generally spot on. For someone designing a control system, they must be able to think like an operator and understand how operators behave and anticipate how they will use the control system. This is key to a successful project. If the operators do not like or understand the control system, they will kill a project. This is different than understanding how a process works which is also important.

Electronic industry standards

You know standards for the electronic industry have been around for decades, so each of the interfaces we have discussed does have a standard. Those standards may be revised but will still be used by all segments of our respective engineering disciplines.

Note for example back in the early 1990s many big companies HP, Boeing, Honeywell … formed a standards board and developed the Software standards( basic recommendations) for software practices for programming of flight systems. It was not the government it was the industry that took on the effort. The recommendations are still used. So an effort is first needed by a meeting of the minds in the industry.

Now we have plenty of standards on the books for the industry, RS-422, RS-232, 802.1 … and the list goes on and on. The point is most of the companies are conforming to standards that may have been the preferred method when that product was developed.

In the discussion I have not seen what the top preferred interfaces are. I know in many of the developments I have been involved in we ended up using protocol converters, Rs-232 to 802.3, 422 to 485 … that’s the way it’s been in control systems, monitoring systems, Launch systems and factory automation. And in a few projects no technology existed for the interface layer, had to build from scratch. Note the evolution of ARPA net to Ethernet to the many variations that are available today.

So for the short hall if I wanted to be more comparative I would use multiple interfaces on my hardware say usb, wireless, and 422. Note for new developments. With the advancement in PSOCS and other forms of program logic interface solutions are available to the engineer.

Start the interface standards with the system engineers and a little research on the characteristic of the many automation components and select the ones that comply with the goals and the ones that don’t will eventually become obsolete. If anything, work on some system standards. If the customer is defining the system loan him a systems engineer, and make the case for the devises your system or box can support, if you find your product falls short build a new version. Team with other automation companies on projects and learn from each other. It’s easy to find issues as to why you can’t succeed because of product differences, so break down the issues into manageable objectives and solve one issue at a time. As they say divide and concur.