Category: Iacdrive_blog

Non-regenerative & Regenerative DC Drives

Non-regenerative DC drives, also known as single-quadrant drives, rotate in one direction only & they have no inherent braking capabilities. Stopping the motor is done by removing voltage & allowing the motor to coast to a stop. Typically nonregenerative drives operate high friction loads such as mixers, where the load exerts a strong natural brake. In applications where supplemental quick braking and/or motor reversing is required, dynamic braking & forward & reverse circuitry, may be provided by external means.

Dynamic braking (DB) requires the addition of a DB contactor & DB resistors that dissipate the braking energy as heat. The addition of an electromechanical (magnetic) reversing contactor or manual switch permits the reversing of the controller polarity & therefore the direction of rotation of the motor armature. Field contactor reverse kits can also be installed to provide bidirectional rotation by reversing the polarity of the shunt field.

All DC motors are DC generators as well. The term regenerative describes the ability of the drive under braking conditions to convert the generated energy of the motor into electrical energy, which is returned (or regenerated) to the AC power source. Regenerative DC drives operate in all four quadrants purely electronically, without the use of electromechanical switching contactors:

  • Quadrant I -Drive delivers forward torque, motor rotating forward (motoring mode of operation). This is the normal condition, providing power to a load similar to that of a motor starter.
  • Quadrant II -Drive delivers reverse torque, motor rotating forward (generating mode of operation). This is a regenerative condition, where the drive itself is absorbing power from a load, such as an overhauling load or deceleration.
  • Quadrant III -Drive delivers reverse torque, motor rotating reverse (motoring mode of opera tion). Basically the same as in quadrant I & similar to a reversing starter.
  • Quadrant IV -Drive delivers forward torque with motor rotating in reverse (generating mode of operation). This is the other regenerative condition, where again, the drive is absorbing power from the load in order to bring the motor towards zero speed.

A single-quadrant nonregenerative DC drive has one power bridge with six SCRs used to control the applied voltage level to the motor armature. The nonregenerative drive can run in only motoring mode, & would require physically switching armature or field leads to reverse the torque direction. A four-quadrant regenerative DC drive will have two complete sets of power bridges, with 12 con trolled SCRs connected in inverse parallel. One bridge controls forward torque, & the other controls reverse torque. During operation, only one set of bridges is active at a time. For straight motoring in the forward direction, the forward bridge would be in control of the power to the motor. For straight motoring in the reverse direction, the reverse bridge is in control.

Cranes & hoists use DC regenerative drives to hold back “overhauling loads” such as a raised weight, or a machine’s flywheel. Whenever the inertia of the motor load is greater than the motor rotor inertia, the load will be driving the motor & is called an over hauling load. Overhauling load results in generator action within the motor, which will cause the motor to send cur rent into the drive. Regenerative braking is summarized as follows:

  • During normal forward operation, the forward bridge acts as a rectifier, supplying power to the motor. During this period gate pulses are withheld from reverse bridge so that it’s inactive.
  • When motor speed is reduced, the control circuit withholds the pulses to the forward bridge & simultaneously applies pulses to reverse b

Systems Development Life-Cycle

Step 1. Initiation
Step 2. System Concept Development
Step 3. Planning
Step 4. Requirements Analysis
Step 5. Design
Step 6. Development
Step 7. Integration and Test
Step 8. Implementation
Step 9. Operation and Maintenance
Step 10.Disposition

There are three major players present in this model; Customer (client), System Integrator, and Machine or device manufacturer.

In many instances, the result of step 4 (Requirements Analysis), is an RFQ for the system implementation has been issued to one or more systems integrators. Upon selecting the system integrator, step 5 (Design) begins. Upon completing step 5 (Design), the system or process flow is defined. One of the major outputs from step 5 are the RFQs for the major functional components of the finished system. Based on the RFQ responses (bids), the Machine or device manufacturers are chosen.

Steps 6, 7, and 8 are where all the individual functional components are integrated. This is where the system integrator makes sure the outputs and feedback between to machines or devices is defined and implemented. Step 8 ends with a full systems functional test in a real manufacturing situation is demonstrated to the customer. This test includes demonstrating all error conditions defined by the requirements document and the systems requirements document. If a specific device or machine fails its respective function it is corrected (programming, wiring, or design) by the manufacturer and the test begins anew.

Each of the scenarios presented is correct. The technician role being presented (customer, integrator, or manufacturer) is not clear. System diagnostics are mandatory and need to be well defined, even in small simple machines. There should be very few and extreme conditions under which the customer’s technician should ever have to dig into a machine’s code to troubleshoot a problem. This condition usually indicates a design or integration oversight.

(You can find a complete description here, http://en.wikipedia.org/wiki/Systems_development_life-cycle)

DC drive typical applications

DC drive technology is the oldest form of electrical speed control. The speed of a DC motor is the simplest to control, & it can be varied over a very wide range. These drives are designed to handle applications such as:

Winders/coilers – In motor winder operations, maintaining tension is very important. DC motors are able to operate at rated current over a wide speed range, including low speeds.

Crane/hoist – DC drives offer several advantages in applications that operate at low speeds, such as cranes & hoists. Advantages include low-speed accuracy, short-time overload capacity, size, & torque providing control. A typical DC hoist motor & drive used on hoisting applications where an overhauling load is present.

Generated power from the DC motor is used for braking & excess power is fed back into the AC line. This power helps reduce energy requirements & eliminates the need for heat-producing dynamic braking resistors. Peak current of at least 250 percent is available for short-term loads.

Mining/drilling -The DC motor drive is often preferred in the high-horsepower applications required in the mining & drilling industry. For this type of application, DC drives offer advantages in size & cost. They are rugged, dependable, & industry proven.

Techniques contribute in control system

1. Any successful methodology is not a simple thing to come by and typically requires a huge commitment in time and money and resources to develop. It will take several generations to hone the methods and supporting tools.

2. Once you get the methods and tools in place, you then face a whole separate challenge of indoctrinating the engineers in the methods.

3. Unique HMI text involves a lot of design effort, implementation, and testing.

Many of the techniques contributed by others in the discussion address faults, but how do you address the “normal” things that can hold up an action such as waiting for a process condition to occur, such as waiting for a level/pressure/temperature to rise above/fall below a threshold or waiting for a part to reach a limit switch?

Some methods allow for a text message that describes each step. When developing these text messages, I focus on what the step’s transition is waiting for, not the actions that take place during the specific step. This helps both the operator to learn the process as well as diagnose what is preventing the machine from advancing to its next step.

I have seen sequencing engines that incorporate a “normal” step time that can be configured for each step and if the timer expires before the normal transition occurs, then you have “hold” condition. While effective, this involves a lot of up-front development time to understand the process and this does not come cheaply (with another nod to John’s big check!).

(Side note on sequential operations: I have used Sequential Function Charts (SFCs/GRAFCET) for over 20 years and find them to be exceptionally well-suited for step-wise operations, both from a development perspective as well as a troubleshooting perspective.)

I have seen these techniques pushed by end users (typically larger companies who have a vested interest in standardization across many sites) as well as OEMs and System Integrators who see these as business advantages in shortening development, startup, and support cycles. Again, these are long-term business investments that require a major commitment to achieve.

DC Drives QUIZ

1. List three types of operations where DC drives are commonly found.

2. How can the speed of a DC motor be varied?

3. What are the two main functions of the SCR semi conductors used in a DC drive power converter?

4. Explain how SCR phase angle control operates to vary the DC output from an SCR.

5. Armature-voltage-controlled DC drives are classified as constant-torque drives. What does this mean?

6. Why is three-phase AC power, rather than single phase, used to power most commercial & industrial DC drives?

7. List what input line & output load voltage information must be specified for a DC drive.

8. How can the speed of a DC motor be increased above that of its base speed?

9. Why must field loss protection be provided for all DC drives?

10. Compare the braking capabilities of nonregenerative & regenerative DC drives.

11. A regenerative DC drive requires two sets of power bridges. Why?

12. Explain what is meant by an overhauling load.

13. What are the advantages of regenerative braking versus dynamic braking?

14. How is the desired speed of a drive normally set?

15. List three methods used by DC drives to send feed back information from the motor back to the drive regulator.

16. What functions require monitoring of the motor armature current?

17. Under what operating condition would the mini mum speed adjustment parameter be utilized?

18. Under what operating condition would the maxi mum speed adjustment parameter be utilized?

19. IR compensation is a parameter found in most DC drives. What is its purpose?

20. What, in addition to the time it takes for the motor to go from zero to set speed, does acceleration time regulate?

Industrial Ethernet vs. Fieldbus technologies

Where we really need digital communication networking, in my personal opinion, is down at the sensor/transmitter and positioner/actuator/valve level to take the place of 4-20 mA and on/off signals. Down at the level 1 of the Purdue reference model you need a fieldbus, not one of the “H2” types of fieldbus, but one of the “H1” types of fieldbus. When first introduced, these technologies were not as fast and not as easy to use has they could have been, but after many years of refinement these technologies are finally becoming sufficiently easy for most plants to use.

An “H1 fieldbus” is the most practical way to digitally network sensors/transmitters and positioners/actuators/valves to the DCS. Options include FOUNDATION fieldbus H1, PROFIBUS-PA, CompoNet, ASI, and IO-link. These protocols can take the place of 4-20 mA and on/off signals.

Note that “H1 fieldbus” should not be confused with the very different “H2 fieldbus” category of protocols used at level 1-1/2 of the Purdue reference model to connect remote-I/O,

Operate low speed generator and high speed generator in the same terminal

Can we operate low speed generator and high speed generator in the same terminal? Is there a mechanical effect?

First, specify that this is an isolated system with two generators feeding the same bus. Operation of an isolated system is different than a grid connected system, and the mode setting of the governors have to be set to accommodate this. Depending upon the prime mover type and governor model, improper tuning will manifest itself in speed variations. The size of the two machines relative to each other, as well as their size relative to the load, can have measurable impact as well. The best way to tell whether it is mechanical or electrical in nature is to look at the time-frame of the phenomena relative to the time constants of the various control and response loops.

Second, “…In large power system, generators are not connected in the same terminal…” is not generally true, there are many power plants where multiple generators feed the same bus before the power is utilized.

Third, “…frequency oscillation is about 1.5-2 Hz…”, if you mean that the frequency swings between 48 and 52 Hz routinely, that usually indicates a governor setup/tuning problem or a non-uniform load.

Fourth, reactive current compensation takes place in quadrature from real power and should have minimal effect on real power and only affect the terminal voltage if not set properly. Droop compensation is the means for ensuring that the AVRs do not fight with each other since you cannot have two independent controllers attempting to control the same control variable.

Fifth, regarding different types of prime movers, some are inherently more likely to induce mechanical vibrations, especially reciprocating engines, especially if they are not all of the same size and/or number of cylinders. The same is true of the loads, non-uniform, cyclic loads can cause very severe problems especially on isolated systems where the load is a significant percentage of the prime movers’ output power. The analysis of, and solution to, such problems is an interesting area of study.

Frequency Inverter Direct Digital Control

Modulating Supply & Return Fans are used as a means of providing proper variable air volume (VAV) control as well as building pressurization. Many such VAV systems are still largely pneumatic with static to the downstream boxes being maintained by inlet guide vanes. To provide increased energy savings and energy comfort, these systems can be easily converted to frequency inverter fan control of the supply and return fans and Direct Digital Control (DDC) to coordinate any increased energy saving strategies. Figure 1 shows such a system.

Frequency Inverter Direct Digital Control

To increase energy savings, the DDC controller can be programmed to reduce the flow from the return & supply fans for short periods of time. Coordinated with the building pressurization system, any temporary loss of space temperature may be avoided.

In Figure 1, the supply fan is controlled by the duct static pressure sensor, via the DDC, while the outside air and mixed air dampers are optimized to provide economizer control.. The return fan is modulated to stabilize building pressure at a slight positive. For simple supply and exhaust systems the building pressure and static pressure sensors may be connected directly to the frequency inverter with an internal PID controller.

Typical Energy Savings are realized from converting pneumatic (or electromechanical) control to DDC control with frequency inverter in the following ways:

  • Locking inlet guide valves mechanically open to allow the frequency inverter to fully modulate the fans.
  • Free cooling by accurately modulating the economizer dampers and sequencing the mechanical equipment.
  • Controlling static and resetting the static pressure during short periods of time.
  • Accurate building pressurization.
  • Implementing other energy saving measures which include supply air reset, and night purge routines.

CONTROL CONSIDERATIONS

  • Placement of the indoor static pressure sensor is important as it should provide a stable signal. Entrances, dock, and other areas where large , sudden static pressure changes may occur should be avoided.
  • The outside reference static tip should be shielded from wind and rain.
  • When the exhaust fan is frequency inverter controlled, consider a 2-position air damper to prevent the outside air from entering the building (infiltration) when the exhaust fan is off or a very low speeds.
  • For simple VAV systems, consider using frequency inverters with built in PID controls such as the Iacdrive frequency inverters.. This minimizes hardware and installation costs. Static sensors provide a 0-10vdc control signal directly to the frequency inverter.
  • Duct mounted static pressure sensor should be mounted 2/3 of the distance of the distribution system.

Current transformer selection

When you want to select current transformer with appropriate rated power for your power system, you need to consider that value of rated power of selected current transformer should be higher from sum of values of load and Joules’ losses which are a consequence of flow current through conductors which connect current transformer with relay.

So, if you have a long distance between current transformer and relay, then you need to consider one of two following manners for solving this problem:
1. replacing existing current transformer with current transformer with higher power,
2. replacing existing conductors with conductors with lower cross-section.

This solution is a consequence of necessity for reducing of Joules’ losses which are a consequence of flow current through conductors which connect current transformer with relay. If you have conductors whose value of rated current is 5A, you will have Joules’ losses P=R*I^2=R*5^2=25*R. Otherwise, if you have conductors whose value of rated current is 1A, you will have Joules’ losses P=R*I^2=R*1^2=R.
On this way, Joules’ losses in your selected conductors will be reduced 25 times and selected current transformer will be unloaded by reducing additional load.

Rotary Tube Furnace Efficiency

There are many factors that govern the performance of rotary tube furnaces. A direct fired rotary unit has a potential for much higher thermal efficiency due to the direct contact of the hot gases with the material in process. Cement kilns are the most common large scale unit operation with direct fired units. Any articles you find on this will be helpful. Thermal efficiency can be estimated by dividing the inlet temperature minus the outlet temperature by the inlet temperature minus the ambient temperature in absolute scales either Rankine or Kelvin. Then there is the issue of co-current versus counter-current firing and heat recovery from the hot material and the exit gas for which standard designs are available. Indirect fired rotary kilns have heat transfer limitations due to the thickness and alloys needed for high temperature calcination >500 C. There is no simple way to measure the equivalent of the inlet and outlet temperatures on a direct fired unit. There are simply exit gas temperatures from each zone and an approximate shell temperature on the hot side of the shell which is lower than the zone exit gas temp. These are useful for control purposes and consistent operation. The higher the temperature the material requires to achieve conversion the higher the shell side fired temperature has to be to provide the delta T necessary to drive heat through the shell into the material zone.

Some materials further limit heat transfer by adhering to the inside of the shell and acting as an insulator! This requires trial and error application of “knockers” at the ends of the shell or sometimes internally secured chains that bang around and knock the adhering material loose. This is a potential nightmare as the learning curve to install chains so that the securing lugs and the chains themselves will stay attached for acceptably long service before failing and ending up in the take off conveying equipment with usual breakage and downtime is an uncertain one. From Perry’s one can find thermal efficiencies for indirect fired rotary’s given as less than 35%. The bed fill can be 10-30% depending on the heat demand of the material and the heat transfer limitations. You will want to have real time gas usage metering on the burners so that you know the theoretical energy input. From that you can subtract the theoretical heat needed to complete your reaction and compare that to the input to see how efficiently you have used the energy input.

The few large high temperature direct fired rotary kilns I have seen had view ports for measuring the local wall temperatures by optical pyrometer. It can be a challenge to get a protected thermocouple sheath down into the moving bed for an actual bed temperature and even just to hang it in the gas streams at the outlet or inlet area. See if you can contact cement kiln suppliers for some configurations of temperature sensing elements for your application. Bed fill effects on heat transfer are related to several parameters. Above ~500 C gas and refractory liner temperatures, the main heat transfer mode will be radiative as far as the surface of the bed material. Within the bed it will be conduction and some convection at the surface. A thin bed will reach max. temperature in shorter time, but this reduces through put for a given gas temperature. If you increase bed fill to increase production you will have to increase the firing temperature and the outlet temperature will probably increase lowering your thermal efficiency. This becomes a trade off between production rate and energy efficiency. Countercurrent firing usually maintains the highest driving force for heat transfer along the bed and gives the highest temperature of the bed just before exit of the bed material.

Perry’s may have a useful section on direct fired rotary kilns and lime or cement manufacturing references may help you as well. Please make sure lead emissions to air are properly captured