Category: Iacdrive_blog

What is the soft stop of an electric motor?

In electric motor stop, the traditional control ways are accomplished by momentary power cutting off. But in lots of applications, it’s not allowed the motor instant shutdown. For example: high-rise buildings, building’s water pump system, it will appear huge water hammer during instant shutdown, to damage the pipe, even the pumps. To reduce and avoid “water hammer” phenomenon, the pumps motor need be shut down gradually, that is soft stop. The soft starter can meet such requirements. In pumping station, soft stop technology can avoid the pump door damaged of the pumping station, to reduce maintenance costs and maintenance works. The soft stop function in soft starter is, when the thyristor gets stop instruction, decrease conduction angle gradually from full conduction, and achieve full closed after a certain time. Stopping time can be adjusted according to actual requirements within 0 – 120s.

Soft starter energy saving principle

Induction motor is inductive load, the current lags the voltage, most electrical appliances are the same. In order to improve the power factor we need to use capacitive load for compensation, parallel capacitors or with synchronous motor for compensation. Reduce motor excitation current also can improve the power factor (HPS2 saving function, reduce excitation current by reducing voltage at light loads, to increase COS∮). Energy-saving operation mode: decrease voltage in light loads to reduce excitation current, the motor current divides into the active component and reactive component (excitation component), to increased COS∮.

Energy saving operation mode: when the motor load is light, the soft starter working at energy-saving conditions, PF switch to Y position, under the current feedback action, the soft starter reduces the motor voltage automatically, to reduce excitation component of the motor current. Thereby improving the power factor of the motor (COS∮). If the contactor in bypass state, this feature cannot works. TPF switch provides energy saving features with two reaction times: normal speed and slow speed. The soft starter operation in energy saving state automatic (In normal and slow speed), saving 40% energy in no-load and 5% with load.

How is Vector Control improving motor output torque capability?

1: Torque boost: this function is the variable speed drive increases output voltage (mainly in low frequency) to compensate the torque loss due to voltage drop in the stator resistance, thereby improving the motor output torque.

2: Improve the motor insufficient output torque in low speed
“Vector control” can make the motor output torque at low speeds, such as (without speed sensor) 1Hz (for 4-pole motor, the speed is about 30r/min), same as the torque output at 50Hz power supply (maximum is approx 150% of rated torque).

For the V/F control variable speed drive, the motor voltage increases relatively as the motor speed decreases, which will result in lack of excitation, and make the motor can not get sufficient rotational force. To compensate this deficiency, the variable speed drive needs to raise voltage to compensate for the voltage drop in motor speed decreases. This feature called “torque boost”.

Torque boost function is to improve the variable speed drive output voltage. However, even if the drive increases voltage, the motor torque and current does not increase corresponding. Because the motor includes the torque and other components (such as the excitation) which generated by the motor.

“Vector Control” allocates the motor current value to determine the motor torque current component and other current component (such as the excitation component) values.

Change 230V to 460V for operating an Electric Motor

I have a generator of 3 hp, and it outputs 230 V, and I have a submersible Electric Pump, the motor of which is rated to operate at 460 V, Can I use a step up transformer to increase the voltage output from my generator and power the pump? What more parameters do I need to know of in this case?

Check to see if the generator has 3 phase power output. A typical home generator will provide 230 volt single phase output. You will not be able to step up to 460 volt and start a 3 phase motor with single phase. The only way at that point to generate 3 phase would be to use a VFD with single phase input capability and use the drive to generate 3 phase. You will still need to use a transformer. Variable frequency drives won’t normally behave well on generator power but may for an intermittent load like a submersible pump.

Synchronous generators inter-turn faults

For the MW range of Synchronous generators, there is no terminology of “interturn fault” on the stator winding. There could only be coil to coil fault on the stator for such size of machine design.

There are possibilities of having inter-turn faults on the rotor winding: when the insulation positioned between adjacent conductors break (electrically) over time under certain mechanisms. These mechanisms can include; turn to turn movement caused by thermal expansions (during starts/stops cycles), rotor coil shortening, end strap elongation, inadequate end-turn blocking or conductive bridging formed by contamination. The protection of avoiding the interturn insulation is a function of how well the machine is designed, maintained and operated. The OEM of the generator usually provides recommendations to avoid any inter-turn fault during the lifecycle of the machine. Saying this, there are ways to monitor the interturn fault indication; such as data acquisition (air gap flux probe, air gap search coil), as supportive monitoring (RSO, Shaft voltage, shaft vibration levels, excitation current etc.). Ideally, you have to be knowledgeable with the machine design to interpret the acquired data to make valuable predictions.

If you start by contemplating what kind of symptoms inter-turn faults could give rise to, you will be part of the way.
While machine is at standstill, you could do some reflected-wave analysis. All phases should show (near) identical responses.
During operation, you could have non-identical current and voltage waveforms on the three phases (you must compensate for unequal load).
You may experience strange sounds, in the supersonic range. Changing for different locations around the stator. You can continue the list, and settle on systems that may be able to detect any anomalies, so you can react accordingly.

What is a soft starter?

Motor starter (also known as motor soft starter) is a electronic device integrates soft start, soft stop, light-load energy saving and various protection functions for motor controls. Its main components are the three phase reverse parallel thyristors between power supply and being controlled motor and related control circuits. Control the conduction angle of the three phase reverse parallel thyristors by different methods, to achieve different functions by the changeable of the input voltage on the controlled motors.

The difference between soft starter and frequency inverter

Soft starters and AC motor speed control, it can change output voltage and frequency at the same time; actually, soft starter is a regulator for motor starting, only changes output voltage but not the frequency. The frequency inverter has all the features of soft starter, but its price is much more expensive than the soft starter, and the structure is much more complex.

Frequency inverter allows the AC motor smooth start up, control startup current growing from zero to motor rated current, reduce impact to the power grid and avoid the motor being burned out, also provide protection in motor running process. Besides these functions, the main function of frequency inverter is adjusting the motor running speed according to actual operation conditions, to achieve energy saving effect.

Which factors will affect VFD output torque?

Heating and cooling capacity to determine the variable frequency drive output current capability, thus affect its output torque capability.

Carrier Frequency: generally the variable frequency drive rated current is the continuous output value under the highest carrier frequency, the maximum ambient temperature. Reduce carrier frequency won’t affect the motor current, but will reduce electronic devices heating.

Ambient temperature: like will not increase VFD drive protection current when detect relative low ambient temperature.

Altitude: altitude increases will affect both heating and insulating property of the variable frequency drive. Generally it’s fine in below 1000m, and derate 5% per 1000meters for above.

Sensorless motor control with TI and Microchip

Question:
I need to learn about the sensorless control of permanent magnet AC (PMAC) motors. Can you recommend a tutorial and/or open source code for the sensorless motor control using the
a) TI TMS320 series processor, or
b) Microchip dsPIC33EP128 series processor?

Answer:
I have used Microchip and TMS320 to develop VFD. They provide you with a demo kit, PCB and a motor. It take me half a day to get the demo PCB running with my PMSM. Then I copy their design to my own.

The Microchip solution provides you with demo code. I used that before, but it require quite a bit of C programming, and motor tuning take even longer. The demo code and application note are no where near the performance of the Ti solution (I do not work for Ti -so I am not advertising). I take me a week to get my motor spinning with the demo kit from Microchip.

Then there are the International Rectifier solution that is available from many years. The IR sensorless motion control solution have implemented a FOC motor control in FPGA. So you don’t need to write code for motor control. In the chip, it also has a 8051 cpu. You write the program in C; 1 page of code will get a washing machine working. It takes me 1 day to get a PMSM motor running with this solution.

I will use the TI solution for high end motor control – such as a US$40,000 dollar, 100HP direct drive PCP used in the oil field.
I will use the IR solution for a water pump, washing machine – things that is a few kw.
I will use the microchip for solution for toys, because Microchip is so much fun to play with.

Circuit Breakers tests

1- For small circuit breakers we can do the test of Magnetic protection behavior by using “Injection Current Apparatus”, and suppose the CB’s results were good, do you think it’s enough? I’m sure not, because by this apparatus we can inject the necessary current with a very low voltage value (5-15V), so, do you think that the arc will be the same if we have the same current but with “400V”?

2- The same question for “Short Circuit Tests”

Personally, I done the tests of many MCBs for different manufactures by using “Injection Current Apparatus”, and I saw the same tests in laboratory in France for the same MCBs by injection the same currents values with 230V or 400V depending on the CB, be sure, the results weren’t the same, we found some differences for Magnetic protection tests, and big differences for Short Circuit tests.

Difference between ICCB, MCCB and MCB

The aforementioned types of Circuit Breakers are used in LV System and generally based on the same operating principle.
MCB and MCCB/ICCB have a bimetal heater for overload which releases the Contact s while for short circuit the trip / electromagnet hammers itself against moving contacts. The arc created by breaking contacts is extinguished in an arc chamber. Are defined as “Thermo-magnetic “ CBs , accordingly. It is operating characteristic addressing the overload by thermal action of the bimetal strip and instantaneously dealing with short circuit occurrences by electromagnetic action.

MCB – Miniature Circuit Breaker is suitable for domestic usage. Used to protect final circuits from O/C such as Overload & Short Circuit.
i- MCB is basically made in accordance to BS 3871, is now superseded by BS EN 60898 which recognizes type B, C & D.
Type B is suitable in domestic premises.
Type C is used in commercial & industrial applications.
Type D is suitable for application where a high in-rush current is expected.
ii- MCB is of low breaking / making capacity as well as low current rating compared with MCCB/ICCB. MCBs available in different number of poles (SP, DP, TP,,).

MCCB – Molded Case Circuit Breaker & Insulated Case Circuit breaker are also current limiting devices but with high making/ breaking capacity and current ratings compared with MCB. MCCB and ICCB are almost the same and both are manufactured in accordance to NEMA AB1/AB3 to suit industrial and commercial purposes.
The advent of electronic protection increased the use of them and the scope is widened like tolerances, range of time & current adjustment. By virtue of that a good discrimination can be achieved with accuracy about ±10%.
Eventually, MCCB/ICCB has advantages in the capability of accommodating further features which can be provided as
i. RCD.
ii. Under voltage device.
iii. A shunt trip coils that enabling remote tripping.
iv. Auxiliary switches for remote monitoring and/or control.